综合智慧能源 ›› 2024, Vol. 46 ›› Issue (11): 10-18.doi: 10.3969/j.issn.2097-0706.2024.11.002

• 电力大数据分析与挖掘 • 上一篇    下一篇

基于概率TCN-Transformer的短期光伏功率预测模型

盛瑞祥1,2(), 张啸宇1,2,*()   

  1. 1.安徽大学 人工智能学院,合肥 230601
    2.自主无人系统技术教育部工程研究中心,合肥 230601
  • 收稿日期:2024-06-17 修回日期:2024-08-05 出版日期:2024-11-25
  • 通讯作者: * 张啸宇(1993),男,助理教授,博士,从事智能电网与综合能源智能决策、智能电网数据的信息与隐私安全等方面的研究,zhangxiaoyu@ahu.edu.cn
  • 作者简介:盛瑞祥(2002),男,硕士生,从事智能电网方面的研究,wa22301052@stu.ahu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62303005)

Photovoltaic power forecasting model based on probabilistic TCN-Transformer

SHENG Ruixiang1,2(), ZHANG Xiaoyu1,2,*()   

  1. 1. School of Artificial Intelligence, Anhui University,Hefei 230601,China
    2. Engineering Research Center of Autonomous Unmanned System Technology, Ministry of Education, Hefei 230601,China
  • Received:2024-06-17 Revised:2024-08-05 Published:2024-11-25
  • Supported by:
    National Natural Science Foundation of China(62303005)

摘要:

提出了一种基于时序卷积网络(TCN)和Transformer结合的短期光伏发电功率预测方法。分析了风速、雨量、太阳辐照度、云量等影响光伏发电功率的主要因素;利用TCN提取序列的全局空间特征并采用Transformer提取序列中的长期依赖关系的时序特征,提出TCN-Transformer复合模型以实现高精度的光伏功率预测,并将其应用于光伏发电的确定性预测与概率预测中;通过澳大利亚沙漠知识太阳能中心(DKASC)数据集进行仿真分析。结果表明,改进后的TCN-Transformer模型在不同天气条件下均表现出优异的预测性能,有效提高了光伏功率的短期预测精度。

关键词: 光伏发电预测, 时序卷积网络, Transformer, 确定性预测, 概率预测

Abstract:

A short-term PV power prediction method based on a temporal convolutional network (TCN) and a Transformer structure is proposed. Firstly, the main factors affecting PV power generation,such as wind speed, rainfall, light intensity and cloudiness, are analysed. Then, TCN is used to extract the global spatial features of the sequence, and Transformer is used to extract the temporal features of long-term dependencies in the sequence, so that a TCN-Transformer composite model with a high prediction precision is applied to PV power deterministic and probabilistic prediction. Simulation analyses are performed on the dataset from DKASC(Australia), and the results show that the improved TCN-Transformer model exhibits excellent prediction performance under different weather conditions, improving the short-term prediction accuracy on PV power.

Key words: photovoltaic power generation forecast, temporal convolutional network, Transformer, deterministic prediction, probabilistic prediction

中图分类号: